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Zeeman Effect of Bound Excitons in Gallium Phosphide 
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The Zeeman effect of the recombination radiation from bound exciton complexes in GaP was investigated 
as function of direction of the magnetic field in the crystal. Cubic anisotropy was observed in the Zeeman 
pattern. This was analyzed using an effective spin Hamiltonian for the bound holes; numerical values of 
the constants in the spin Hamiltonian and g values of the electrons were determined from the data. 

1. INTRODUCTION 

IN the preceding paper,1 three sharp lines called A, 
B, and C in the optical spectrum of GaP were 

described. On the basis of the evidence discussed there, 
which is further strengthened by the analysis of the 
anisotropy of the Zeeman effect presented below, the 
following centers are assumed to be responsible for 
these lines. 

Line C arises from the recombination of an indirect 
exciton bound to a neutral donor; it has an energy of 
2.3101 eV while the free exciton has an energy of about 
2.315±0.005 eV and the indirect band gap is about 
2.325±0.005 eV at 0°K. The two electrons (from the 
Xi band edge) of the complex are in orbital singlet 
states and their spins are paired off. Lines A and B 
arise from an exciton bound to an ionized donor. They 
have energies of 2.3177 and 2.3168 eV, respectively. 
Since the center is tightly bound, its electron must be 
derived from a conduction band minimum lying above 
the band edge, probably the p)00] minimum. 

The Zeeman effect of lines B and C shows anisotropy 
when the direction of the magnetic field relative to the 
crystal axes is changed. In this paper we account for 
this anisotropy in terms of the anisotropy of the 
magnetic properties of the holes, and we determine 
from the data the values of the spin Hamiltonian 
parameters of the holes and the g values of the electrons. 

2. THE SPIN HAMILTONIAN OF THE HOLE 

A hole bound to an impurity center in a cubic crystal 
can have a fourfold or a twofold degeneracy.2 The 
ground state is expected to be fourfold degenerate, and 
so its magnetic behavior can be described by a spin 
Hamiltonian with spin / = f . 

M=PZKJ-R+L(Jx*Hx+Jv*Hy+J,*HM)l, (1) 

where ft is the Bohr magneton, x, y, z refer to the cube 
axes, and K and L are constants. That (1) is the most 
general linear Zeeman Hamiltonian for / = § in cubic 
symmetry was shown by Luttinger3 and other authors. 
The first term is isotropic, the second term, in Z,, is not. 

1 D. G. Thomas, M. Gershenzon, and J. J. Hopfield, preceding 
paper, Phys. Rev. 131, 2397 (1963). 

2 D. Schechter, J. Phys. Chem. Solids, 23, 237 (1962). 
3 J. M. Luttinger, Phys. Rev. 102, 1030 (1956). 

The constants K and L have no simple relation to 
fundamental band structure constants. The effective 
mass Hamiltonian of a free hole depends on five such 
constants3; it is given by 
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where k' = k+eA/fe; and A is the vector potential of H. 
The constants 71, 72, 73 characterize the orbital motion. 
The term proportional to the magnetic field depends 
on an apparent spin moment which is determined by 
the constants K and q. The constant q would vanish in 
the absence of spin-orbit coupling and so it is much 
smaller than K; a typical value is q^l0rsn for 
germanium.4 The constants K and q contribute ex
plicitly to the Zeeman splitting of a hole (free or 
bound), but the orbital degeneracy of the acceptor 
state results in an orbital magnetic moment which also 
contributes to the splitting. The situation is similar to 
that of a free atom in an orbitally degenerate s tate: 
The last two terms of Eq. (2) correspond to the mag
netic interaction of the spin moment, the first three 
terms give contributions analogous to the interaction 
of an orbital moment, and the effective Hamiltonian, 
Eq. (1), describes the resulting anomalous Zeeman 
effect with the constants K and L corresponding to the 
Lande g factor. 

Two conclusions can now be drawn. First, the values 
of K and L are expected to differ in different complexes, 
since the orbital contribution is determined by the 
particular state of binding. Second, the ratio L/K is 
expected to be appreciable even though q/n may be 
negligible; this is because the anisotropy in the effective 
mass, which is not negligible, is reflected through the 
orbital motion in the anisotropy of the total effective 
moment. 

3. LINE C 

The upper level has two electrons 13a orbital singlets 
and with antiparallel spins, and a Bole (see Fig. 2, 
preceding paper). I t has the spin Hamiltonian given 

4 This is an old estimate by W. Kohn (unpublished). 
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by (1). The lower level, an orbital singlet in cubic 
symmetry with a spin of J, has an isotropic g factor. 
Thus, the anisotropy in the Zeeman spectrum is due 
to the hole in the upper level. 

The anisotropy in the levels of the Hamiltonian (1) 
has already been given by Bleaney.5 Before discussing 
its application to line C, we shall give his result, using 
a slightly different notation. 

Let dbfgo/3# and ±lg$H (go and gi are positive) 
denote the position of the two outer and two inner 
levels for an arbitrary direction of the field. While go 
and gi depend on direction, the sum of the squares, 
9go2+gz2, does not. This follows from the fact that 
9go2+gi2 is proportional to the magnetic susceptibility 
of the bound hole which, in cubic symmetry, must 
reduce to a scalar. We define two quantities, M and e, 
through 

10M2 = 9go2+g;2, 
M2(l+(S/3)e) = g0(001)gi(001), 

where go(001) is the go value for the field in the [001] 
direction. M is an average g value and e characterizes 
the departure from spherical symmetry; it lies within 
the range — f to + i , the two extremes corresponding 
to the vanishing of g»(001) or #(111), respectively. 
The g values for an arbitrary direction X of the field, 
are given in terms of M and e by 

9go2 = M2{5+4Cl+15e(l+e) 

X (x,v+W+x/x. 2 -*)- e2]1/2> i (3a) 
# 2=M 2{5-4[l+15€(l+e) 

Xfrfrf+^W+Wf-i)-*!1'*}. (3b) 

The extreme values of go and gi occur along the [001] 
and [111] directions and, for a field lying in the plane 
of these two directions, the position of the levels varies 
monotonically between these two directions. 

The values of the Zeeman splittings determine M2 

and € uniquely, but for a given M2 and e there is an 
eightfold ambiguity in the values of K and L. This is 
because there are eight possible ways of ordering (in 
energy) the four states: The levels with positive energy 
can have the mj values of f and | ; § and f; f and — J; 
—| and f; and the four other combinations with 
opposite mj. To decide which of these occurs in GaP 
we use the selection rules for electric dipole transitions 
which are shown on Fig. 2 of the preceding paper. Six 
lines are predicted; the experimental results are plotted 
in Fig. 1. They show only four lines. The outer lines are 
polarized with E_I_H while the inner lines are not 
strongly polarized. As discussed in the preceding paper,1 

we assume that the two inner lines are actually two 
pairs of lines which nearly coincide and are not resolved. 
Further, it is known that the spin-orbit coupling in 
GaP is small so that the electron g value must be close 

*B. Bleaney, Proc. Phys. Soc. (London) 73, 939 (1959). 
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FIG. 1. Zeeman splitting of line C as a function of direction at 
4.2°K. The field is in the (110) plane, # = 31 kG; ju=0.1293 meV. 
The circles are the experimental points; the curves are the result 
of the theory, Eq. (3). The inner lines were assumed to coincide 
when the field is in the [111] direction. 

to 2. When this fact and the selection rules are taken 
into account it is seen that of the eight possible cases 
for the upper level, only one is consistent with the data: 
namely, the level mj=f has the highest Zeeman energy 
and next to it is the level mj=J. This is the ordering 
that would occur if L were zero and it corresponds to 
relatively small values of \L/K\. The relation between 
M2, e, and K, L for this case is 

M2=K2+ (41/10)ZX+ (73/16)Z2, 

e=-(fiLL+fL2). 

According to this model, the outer lines of C, produced 
by the transitions (J,mj) = (f, ±§) to (§, =F§) are 
polarized E_J_H, have a relative intensity of 1 and are 
separated by gfiH where g=(ge+gi). The two inner 
lines produced by the transitions (f, ± f ) to ( J ± | ) , 
are polarized E_]_H, have a relative intensity of 3, and 
a g value g== \3go—ge\. The other two inner lines arise 
from the transitions (f, =F|) to (J, =F|), are polarized 
E||H, have a relative intensity of 2, and a g value 
g=ge—git We must verify that the assumption of near 
coincidence of the inner lines is consistent with the 
anisotropy of go and gi. To do this we assume that the 
coincidence is exact for the field in the [111] direction 
and use the measured splittings in this direction to 
determine ge, go, and gi. We find ge=1.92; gi= 1.09; 
go=0.92; from which Af2=0.881 and e= -0.087. With 
these values of M2 and e the values of go and gi were 
calculated, using Eq. (3), for other directions of the 
field. The resulting six lines are plotted in Fig. 1. The 
maximum divergence of the inner pairs occurs in the 
[001] direction, but because the anisotropy is only 
moderate the line separation is still within our experi
mental resolution. The assumption of coincidence for 
the [111] direction is actually somewhat extreme and 
in the absence of more knowledge we may assume the 
coincidence to occur midway between the [001] and 
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[111] directions. We find, in this case, 

*.= 1.89±0.10, 

#=1.12zb0.10, 
go=0.93±0.04. 

The limits of error have been estimated by assessing an 
experimental accuracy of ± 6 % for the inner lines and 
± 3 % for the outer ones. For the parameters e, L> K 
we find 

€=-0.10±0.04, 

iT==0.65±0.07, 

£=0.15±0.05. 

4. LINES A AND B 

These lines are assumed1 to arise from a direct 
exciton at the center of the zone, bound to an ionized 
donor. The angular momenta of the electron and hole, 
2~\ and i= f , combine to form states with total 
angular momentum 7 = 1 and J = 2, which are split 
by the Coulomb interaction. (The j=% hole state will 
also make a small contribution to the J=\ level; this 
is discussed at the end of this section.) Theoretically 
the state with the greatest multiplicity is expected to 
be lowest, and this is in agreement with experiment. 
The J =2 level is split further by the cubic field. We 
describe the magnetic levels of this complex by a spin 
Hamiltonian which is the sum of a crystalline field 
term 3C(c) and a Zeeman term 3C(z): 

3C=3C<c>+3e(z), (4) 

3C« = -<J.S-b(Jx*Sx+Jy*Sy+JZ
ZSZ), (5a) 

WM=(3ZKJ.R+L(JJHx+JyWy+J*Hz) 
+g£-W\. (5b) 

Here J is the "spin" of the hole, S that of the electron, 
and ge is the isotropic g factor of the electron. The 
values of K, L, and ge are, of course, not expected to 
coincide with those in the previous section. 

The electron and hole belong to representations T6 

and T8. The decomposition of the direct product, 
r 6 X r 8 = r 4 + r 3 + r 5 shows that the J=2 level is split 
into T3 and T&; this splitting arises from the second 
term of 3C(o). The energy levels of 3C(c) are found to be 

£ ( r 4 ) = ( 5 / 4 > + (41/16)4, 

£(T6) = - i a - ( 1 5 / 1 6 ) 5 , 

£ (T«)=- ia - (39 /16)5 . 

The experimental data on the anisotropy of lines A 
and B are shown on Fig. 2. The Zeeman splitting of 
line A is isotropic, which was to be expected from the 
isotropy of the magnetic susceptibility, while line B 
has a slight anisotropy. We have obtained the Zeeman 
levels of the Hamiltonian Eq. (4) for the two most 
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FIG. 2. Zeeman splitting of lines A and B as function of field 
direction at 4.2°K. The field is in the (110) plane, # = 3 1 kG; 
ix =0.1306 meV. The outer components of line B are weak and 
broad (see Fig. 3) and their positions could not be determined 
with good accuracy. They were disregarded in the interpretation 
of the data. 

important directions of the magnetic field, 0301] and 
Q l 11 but as the expressions are rather lengthy we 
shall not give them here. Our experimental accuracy 
warrants keeping only the terms linear in H and these 
are easy to obtain. We go on to discuss the deter
mination of the five constants of Eq. (4) from the data. 

The separation between the J—\ and the J = 2 
levels, measured at zero field, is 9.0X10-4 eV. We were 
not able to resolve the levels T3 and Te at zero field. 
Examination of the wave functions shows that when 
£001] is taken as the quantization axis the mj = 0 state 
belongs to the T$ level, but when £111] is the quanti
zation axis, mj—0 belongs to r6. Hence, a shift of f& 
in the central line of the B group should occur as the 
field is rotated from the £001] to the £111] direction. 
We did not detect this shift but the measured separation 
between the central lines of A and B had, as a function 
of angle, a scatter of 0.5X10-4 eV. Thus, a maximum 
value of |Z>|^0.35X10~4 eV is compatible with our 
data. A possible cause for our inability to measure b is 
the presence of stray strains in the sample. A typical 
width of a Zeeman line is indicated on the trace shown 
in Fig. 3. 

The values of K, L, and ge are obtained from the 
splitting of the / = 1 level and from the splittings of 
the 7 = 2 level for the two directions £001] and £111] 
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FIG. 3. Microphotometer trace of the Zeeman components of 
lines A and B at 31 kG and 4.2°K. Notice that the two outer 
components of line B are weak and broad; they correspond to the 
highly forbidden AJ = 2, Amj — zh2 transitions. 

of the field. We find 

iT=0.77zfc0.16, 

Z=0 .11±0 .07 , 

g e =2.02±0.12. 

The limits of error were estimated by assuming a ± 5 % 
accuracy for the splittings of line A and a ± 3 % 
accuracy for those of line B. 

The assumption that only the ./=§• hole contributes 
to the wave function of the 7 = 1 level is not strictly 
speaking valid. The spin-orbit splitting of the valence 
band is6 0.128 eV which is small compared to the 

6 J. W. Hodby (to be published). We thank Dr. Hodby for 
communicating his results before publication. 

binding energy of the center so that an appreciable 
admixture of the j — \ state in the wave function of 
T4 could be expected. However, our assumption is that 
it is the electron which is tightly bound, while the 
binding of the hole is weak. In this case, the j ~ \ hole 
component in the wave function will be small, but 
finite. To take this admixture into account would 
introduce additional parameters in the theory; the 
Zeeman energy of the hole is not diagonal in j and the 
analysis becomes complicated. I t is still possible to 
define the constants K and L for the 7 = 2 state since 
only the i = f hole contributes to it. The value of L is 
then the same as that obtained above but K and ge 

cannot be determined separately; only 3K+ge is given 
by the splitting of the J =2 state alone. 

We have estimated that a change of 10% in the 
deduced value of ge can result from an admixture of a 
few percent of the j = J hole state. For this reason the 
electron g value deduced from lines A and B is not the 
g value at the higher (presumably V) band edge. On 
the other hand, the g value deduced from line C is the 
average g at the band edge X. We are trying to make a 
theoretical estimate of these g values. 

5. DISCUSSION 

The following two comments can be made concerning 
the values of b, K, and L: 

(a) The j-j coupling of the electron and hole arises 
from the Coulomb interaction; since this is isotropic, 
the constant b must be a result of the anisotropy of the 
hole wave function. This anisotropy is roughly meas
ured by the ratio L/K which, for line B, is ^ 1 / 7 . The 
experimental uncertainty quoted above indicated 
\Wa\S'i5' The smallness of b is, therefore, physically 
reasonable. 

(b) The values of K and L are expected to be 
sensitive to the state of binding of the hole. The values 
which we found for the two centers are not very 
different. This similarity is consistent with our models 
for the two centers because in both, the wave function 
of the hole must be fairly extended. If the extensions 
are comparable the proportions of s and d envelope 
functions will be similar, which will lead to similar 
values for K and for L. 

More quantitative discussion must await calculations 
of bound exciton wave functions which are lacking at 
present. 


